Abstract
Ge2Sb2Te5 (GST) is a kind of non-volatile chalcogenide phase-change material, which has a significant difference in permittivity between its amorphous and crystalline states in the infrared range. On account of this remarkable property, the combination of GST and metamaterials has great potential in tunable meta-devices. In this paper, a perfect absorber based on a nanocross-resonator array stacked above a GST spacer layer and an Au mirror (i.e., a metal-dielectric-metal configuration) is designed and experimentally demonstrated. A thin indium tin oxide (ITO) protective layer is inserted between the GST spacer and the Au resonator to avoid heat-induced oxidation of the GST layer during phase transition. We found that the ITO layer not only can protect the GST layer from deterioration, but also allows a significant blue shift in the absorption peak from 1.808 μm to 1.559 μm by optimizing the thickness of the two dielectric layers without scaling down the size of the metal structure, which provides a more feasible idea in pushing the absorption peak to higher frequency. The LC circuit model is presented to explain this blue-shift phenomenon, which is mainly attributed to the engineering of the dielectric environment of the parallel plate capacitance. In addition, such good performance in dynamitic modulation makes this perfect absorber a robust candidate for optical switching and modulating in various situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.