Abstract

A tunable narrow band filter based on a Bragg grating with surface plasmon polaritons is developed and investigated numerically by using the finite-difference time-domain method. A defect state with narrow transmission peak (about 15 nm) is shown to appear in the bandgap by introduction of a defect into the Bragg grating, which can thus be used as filtering device. We also show that double-channel filtering can be realized by introducing two defects into the Bragg grating. The resonant wavelengths in the bandgap are related to the position of defects and the refractive index of the insulator. Our results may provide useful information in the design of tunable narrow band filters in nano-circuits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call