Abstract

Nanocarriers with carbohydrates on the surface represent a very interesting class of drug-delivery vehicles because carbohydrates are involved in biomolecular recognition events in vivo. We have synthesized biocompatible miktoarm star copolymers comprising glycopolypeptide and poly(ε-caprolactone) chains using ring-opening polymerization and "click chemistry". The amphiphilic copolymers were self-assembled in water into morphologies such as nanorods, polymersomes, and micelles with carbohydrates displayed on the surface. We demonstrate that the formation of nanostructure could be tuned by chain length of the blocks and was not affected by the type of sugar residue. These nanostructures were characterized in detail using a variety of techniques such as TEM, AFM, cryogenic electron microscopy, spectrally resolved fluorescence imaging, and dye encapsulation techniques. We show that it is possible to sequester both hydrophobic as well as hydrophilic dyes within the nanostructures. Finally, we show that these noncytotoxic mannosylated rods and polymersomes were selectively and efficiently taken up by MDA-MB-231 breast cancer cells, demonstrating their potential as nanocarriers for drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.