Abstract

Multicolor fluorescence of mixed halide perovskites enormously enables their applications in photonics and optoelectronics. However, it remains an arduous task to obtain multicolor emissions from perovskites containing single halogen to avoid phase segregation. Herein, a fluorescent composite containing Eu-based metal-organic frameworks (MOFs), 0D Cs4PbBr6, and 3D CsPbBr3 is synthesized. Under excitations at 365 nm and 254 nm, the pristine composite emits blue (B) and red (R) fluorescence, which are ascribed to radiative defects within Cs4PbBr6 and 5D0→7FJ transitions of Eu3+, respectively. Interestingly, after light soaking in the ambient environment, the blue fluorescence gradually converts into green (G) emission due to the defect repairing and 0D-3D phase conversion. This permanent and unique photochromic effect enables anticounterfeiting and microsteganography with increased security through a micropatterning technique. Moreover, the RGB luminescence is highly stable after encapsulation by a transparent polymer layer. Thus, trichromatic light-emitting modules are fabricated by using the fluorescent composites as color-converting layers, which almost fully cover the standard color gamut. Therefore, this work innovates a strategy for construction of tunable multicolor luminescence by manipulating the radiative defects and structural dimensionality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.