Abstract

A new design for a tunable multichannel compact absorber, which is achieved by using an asymmetric photonic crystal with graphene monolayers, is theoretically proposed. The graphene monolayers are periodically embedded into the first and last dielectric layers. The absorption, reflection, and transmission spectra of the absorber are studied numerically. A perfect absorption channel is achieved because of impedance matching, and channel number can be modulated by changing periodic number. The characteristic properties of the absorption channel depend on graphene conductivity, which can be controlled via the gate voltage. The proposed structure works as a perfect absorber that is independent from polarization. It has potential applications in the design of multichannel filters, thermal detectors, and electromagnetic wave energy collectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.