Abstract

Metasurfaces, which can act as wavelength-selective surfaces with multiple passbands or stopbands, have numerous applications, including modulating electromagnetic radiation, and transmitarray or reflectarray antennas. In this paper, the feasibility of such metasurfaces, using plasmonic core–shell nanoparticles, has been studied. By analyzing the polarizability of such particles, it is shown that they are capable of possessing two plasmonic resonances that can be tuned to specific wavelengths by adjusting their design parameters and the constitutive media. In addition, a passband exists in between these two bands. The surface susceptibilities of the metasurface are determined using “sparse approximation formulas.” Analytical scattering coefficients were compared and found to agree with numerical results obtained using full-wave simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.