Abstract

Metasurfaces have been verified as an ideal way to control electromagnetic waves within an optically thin interface. In this paper, a design method of a tunable metasurface integrated with vanadium dioxide (VO2) is proposed to realize independent control of geometric and propagation phase modulation. The reversible conversion of VO2 between insulator phase and metal phase can be realized by controlling the ambient temperature, which enables the metasurface to be switched quickly between split-ring and double-ring structures. The phase characteristics of 2-bit coding units and the electromagnetic scattering characteristics of arrays composed of different arrangements are analyzed in detail, which confirms the independence of geometric and propagation phase modulation in the tunable metasurface. The experimental results demonstrate that the fabricated regular array and random array samples have different broadband low reflection frequency bands before and after the phase transition of VO2, and the 10 dB reflectivity reduction bands can be switched quickly between C/X and Ku bands, which are in good agreement with the numerical simulation. This method realizes the switching function of metasurface modulation mode by controlling the ambient temperature, which provides a flexible and feasible idea for the design and fabrication of stealth metasurfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.