Abstract

Metal trimers [M3 (O/OH)](OOCR)6 are among the most important structural building blocks. From these trimers, a great success has been achieved in the design of 6- or 9-connected framework materials with various topological features and outstanding gas-sorption properties. In comparison, 8-connected trimer-based metal-organic frameworks (MOFs) are rare. Given multiple competitive pathways for the formation of 6- or 9-connected frameworks, it remains challenging to identify synthetic or structural parameters that can be used to direct the self-assembly process toward trimer-based 8-connected materials. Here, a viable strategy called angle bending modulation is revealed for creating a prototypical MOF type based on 8-connected M3 (OH)(OOCR)5 (Py-R)3 trimers (M = Zn, Co, Fe). As a proof of concept, six members in this family are synthesized using three types of ligands (CPM-80, -81, and -82). These materials do not possess open-metal sites and show excellent uptake capacity for various hydrocarbon gas molecules and inverse C2 H6 /C2 H4 selectivity. CPM-81-Co, made from 2,5-furandicarboxylate and isonicotinate, features selectivity of 1.80 with high uptake capacity for ethane (123 cm3 g-1 ) and ethylene (113 cm3 g-1 ) at 298 K and 1bar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.