Abstract
Memory can remarkably modify the collective behavior of active particles. We show that, in a micellar fluid, Quincke particles driven by a square-wave electric field exhibit a frequency-dependent memory. Upon increasing the frequency, a memory of directions emerges, whereas the activity of particles decreases. As the activity is dominated by interaction, Quincke particles aggregate and form dense clusters, in which the memory of the direction is further enhanced due to the stronger electric interactions. The density-dependent memory and activity result in dynamic heterogeneity in flocking and offer a new opportunity for research of collective motions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.