Abstract

We theoretically explore the tunability of magnomechanically induced transparency (MMIT) phenomenon and fast-slow light effect in a hybrid cavity magnomechanical system in which a high-quality yttrium iron garnet (YIG) sphere and an atomic ensemble are placed inside a microwave cavity. In the probe output spectrum, we can observe magnon-induced transparency (MIT) and MMIT due to the photon-magnon and phonon-magnon couplings. We further investigate the effect of atomic ensemble on the absorption spectrum. The results show that better transparency can be obtained by choosing appropriate atomic ensemble parameters. We give an explicit explanation for the mechanism of the Fano resonance phenomenon. Moreover, we discuss phenomena of slow-light propagation. The maximum group delay increases significantly with the increasing atom–cavity coupling strength, and the conversion between slow light and fast light can also be achieved by adjusting the atom–cavity coupling strength. These results may have potential applications for quantum information processing and high precision measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.