Abstract

Using the Landauer-B\"utikker formalism, we study the graphene magneto-transport in the presence of Rashba spin-orbit interaction (RSOI). We show that the angle resolved transmission probability in the proposed structures can be tuned by the RSOI strength. The transmission spectrum show Klein tunneling in the parallel (P) magnetization configuration which can be blocked by the RSOI. This effect is also observable for the anti-parallel (AP) magnetization configuration in different incident angle. The numerical results shows that the spin-polarized conductance strongly depends on the strength of the RSOI and can be generated by tuning the magnetic exchange field and RSOI strength. This spin-polarized conductance is a sensitive oscillatory function of the thickness of the RSO region. Because of the spin-flip effect, the junction shows a spin-valve effect with large and negative magnetoresistance (MR) and spin-magnetoresistance (SMR) in the presence of RSOI. When the RSOI is on, the frequency and amplitude of shot-noise and Fano factor's oscillations are also increased. These results can provide a way to extending the application of graphene-based junctions in spintronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.