Abstract
We present a density functional theory study of 3d transition-metal (TM) atoms (Sc–Zn) adsorbed on a phosphorene sheet. We show that due to the existence of lone pair electrons on P atoms in phosphorene, all the TM atoms, except the closed-shell Zn atom, can bond strongly to the phosphorene with sizable binding energies. Moreover, the TM@phosphorene systems for TM from Sc to Co exhibit interesting magnetic properties, which arise from the exchange splitting of the TM 3d orbitals. We also find that strain is an effective way to control the magnetism of TM@phosphorene systems by tuning the interaction of the TM with phosphorene and, thus, the relative positions of in-gap TM 3d orbitals. In particular, a small biaxial strain could induce a magnetic transition from a low-spin to a high-spin state in phosphorene decorated by Sc, V, or Mn. These results clearly establish the potential for phosphorene utilization in innovative spintronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.