Abstract

The long afterglow phosphors Sr 1.97− x Ba x MgSi 2O 7:Eu 2+ 0.01, Dy 3+ 0.02 ( x=0, 0.4, 0.8, 1.2, 1.6 and 1.97) were synthesized via high temperature solid-state reaction. The phase identification reveals that the crystal plane spacing becomes greater with the decrease in the Sr/Ba ratio. Phase transition occurs when x=1.97. A nonlinear relationship between the emission peak and the crystal plane spacing is obtained with the decrease of the Sr/Ba ratio. This ascribes to the splitting of the 5d level of the Eu 2+ and the change of the crystal field strength. The duration of the afterglow becomes shorter with the decrease of the Sr/Ba ratio. It may ascribe to deeper trap depth, lower trap concentration and the embarrassment of the transfer of carriers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.