Abstract

We experimentally demonstrate the generation of microwave signals with linewidths below 3Hz and a tuning range over 35GHz from a semiconductor laser subject to optical injection and opto-electronic feedback. The feedback loop uses neither a microwave spectral filter nor an amplifier to achieve a reduction in the microwave linewidth of six orders of magnitude. Two microwave frequencies, 25.4 and 45.9GHz, are chosen to highlight single-sideband phase measurements of -105 and -95 dBc/Hz at a 10-kHz offset, respectively. Finally, we demonstrate that longer-term stability can be further improved via asymmetric mutual injection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.