Abstract

A finely tunable low-drift spurious-free single-loop optoelectronic oscillator (OEO) incorporating injection locking and time delay compensation is proposed and experimentally demonstrated. In the proposed OEO, one mode of a single-loop OEO is injection locked by a tunable electronic oscillator resulting in single-mode oscillation. A time delay compensation system is used to compensate the OEO's loop length change caused by environmental changes, such as temperature and strain. Tuning of the oscillation frequency is realized by controlling the injection frequency and absolute loop length of the single-loop OEO. In the experiments, when the ambient temperature varies between 22°C and 31°C within 1000s, an output signal at the frequency of 10.664GHz with a frequency drift better than -0.1 ppb and side-mode suppression ratio greater than 78dB has been realized. Also, the OEO can be tuned with a precise frequency step of 10Hz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.