Abstract
Open microcavities represent a versatile cavity design that allows the external control of internal properties such as cavity thickness and mode detuning without changing the key parameters of the cavity itself, rendering them particularly interesting for light–matter interaction experiments. Here, we demonstrate the tunability of an open microcavity with an embedded active organic layer providing parallel alignment of molecular transition dipole moments as well as strong self-absorption inside the cavity. By decreasing the cavity thickness, we observe a transition from the weak coupling regime into the strong coupling regime evidenced by the onset of avoided crossing behavior between involved modes. This change of coupling mechanism is shown for 2D (planar) as well as 0D (hemispherical) cavities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.