Abstract

We develop a general theory of the layer circular photogalvanic effect (LCPGE) in quasi-two-dimensional chiral bilayers, which refers to the appearance of a polarization-dependent, out-of-plane static dipole moment induced by circularly polarized light. We elucidate the geometric origin of the LCPGE as two types of interlayer coordinate shift weighted by the quantum metric tensor and the Berry curvature, respectively. As a concrete example, we calculate the LCPGE in twisted bilayer graphene, and find that it exhibits a resonance peak whose frequency can be tuned from visible to infrared as the twisting angle varies. The LCPGE thus provides a promising route toward frequency-sensitive, circularly polarized light detection, particularly in the infrared range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call