Abstract
The interplay between interlayer van der Waals interaction and intralayer lattice distortion can lead to structural reconstruction in slightly twisted bilayer graphene (TBG) with the twist angle being smaller than a characteristic angle θ_{c}. Experimentally, the θ_{c} is demonstrated to be very close to the magic angle (θ≈1.08°). Here we address the transition between reconstructed and unreconstructed structures of the TBG across the magic angle by using scanning tunneling microscopy (STM). Our experiment demonstrates that both structures are stable in the TBG around the magic angle. By using a STM tip, we show that the two structures can be changed to each other and a triangular network of chiral one-dimensional states hosted by domain boundaries can be switched on and off. Consequently, the bandwidth of the flat band, which plays a vital role in the emergent strongly correlated states in the magic angle TBG, is tuned. This provides an extra control knob to manipulate the exotic electronic states of the TBG near the magic angle.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.