Abstract

We investigated the electronic structure and transport properties of phosphorus- and arsenic-substituted Li3N using first-principles methods. It is found that both P and As partial substitution reduce Li vacancy formation energy, without appreciable alteration of energy band gap, indicating an improvement in ionic conduction. But a full substitution of P and As results in variation of crystal structure from the space group P6/mmm to P63/mmc, and the energy band gaps of Li3P and Li3As are reduced to 0.72 and 0.65 eV, respectively, in comparison with 1.14 eV of Li3N. A full substitution also brings about an increase of Li vacancy formation energies, suggesting degradation in ionic conduction. Our calculations suggest that it would be viable to achieve balanced electronic and ionic conduction of Li3N by controlled P and As partial substitution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.