Abstract

Proposed quantum networks require both a quantum interface between light and matter and the coherent control of quantum states1,2. A quantum interface can be realized by entangling the state of a single photon with the state of an atomic or solid-state quantum memory, as demonstrated in recent experiments with trapped ions3,4, neutral atoms5,6, atomic ensembles7,8, and nitrogen-vacancy spins9. The entangling interaction couples an initial quantum memory state to two possible light–matter states, and the atomic level structure of the memory determines the available coupling paths. In previous work, these paths’ transition parameters determine the phase and amplitude of the final entangled state, unless the memory is initially prepared in a superposition state4, a step that requires coherent control. Here we report the fully tunable entanglement of a single 40Ca+ ion and the polarization state of a single photon within an optical resonator. Our method, based on a bichromatic, cavity-mediated Raman transition, allows us to select two coupling paths and adjust their relative phase and amplitude. The cavity setting enables intrinsically deterministic, high-fidelity generation of any two-qubit entangled state. This approach is applicable to a broad range of candidate systems and thus presents itself as a promising method for distributing information within quantum networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call