Abstract

We present magnetodynamic simulations, based on the Landau-Lifshitz-Gilbert-Slonczewski equations, of the interaction between a spin torque oscillator (STO) and an ac current (I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ac</sub> ). To avoide any extrinsic phase shift we inject the ac current at the intrinsic frequency (f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">STO</sub> ) of the STO. We nevertheless find an unexpected intrinsic preferred phase shift Δϕ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> between the STO and I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ac</sub> In the in-plane precession mode (IP) the STO adjusts to a state where its resistance (or voltage) lags I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ac</sub> about a quarter of a wave length (Δϕ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> =87-94°). In this regime Δϕ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> increases somewhat with the dc current. However, as the precession changes into the Out-Of-Plane (OOP) mode, Δϕ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> exhibits a dramatic jump by about 180°, i.e. the STO resistance now precedes I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ac</sub> about a quarter of a wave length (|Δϕ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> |=86°). Δϕ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> can furthermore be tuned by changing one or more of the anisotropy field, the demagnetizing field or the applied field. At the IP/OOP boundary, the ac current mixes the two oscillation modes and both chaotic and periodic mixing is observed. We argue that the intrinsic Δϕ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> will impact any circuit design based on STO technology and will e.g. have direct consequences for phase locking in networks of serially connected STOs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call