Abstract
Photocatalytic CO2 conversion for hydrocarbon fuel production has been known as one of the most promising strategies for achieving carbon neutrality. Yet, its conversion efficiency remains unsatisfactory mainly due to its severe charge-transfer resistance and slow charge kinetics. Herein, a tunable interfacial charge transfer on an oxygen-vacancies-modified bismuth molybdate nanoflower assembled by 2D nanosheets (BMOVs) and 2D bismuthene composite (Bi/BMOVs) is demonstrated for photocatalytic CO2 conversion. Specifically, the meticulous design of the Ohmic contact formed between BMOVs and bismuthene can allow the modulation of the interfacial charge-transfer resistance. According to density functional theory (DFT) simulations, it is ascertained that such exceptional charge kinetics is attributed to the tunable built-in electric field (IEF) of the Ohmic contact. As such, the photocatalytic CO2 reduction performance of the optimized Bi/BMOVs (CO and CH4 productions rate of 169.93 and 4.65µmol g-1 h-1 , respectively) is ca. 10 times higher than that of the pristine BMO (CO and CH4 production rates of 16.06 and 0.51µmol g-1 h-1 , respectively). The tunable interfacial resistance of the Ohmic contact reported in this work can shed some important light on the design of highly efficient photocatalysts for both energy and environmental applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.