Abstract

It has been recently demonstrated that a single Josephson junction with a properly engineered impedance environment can be used as a reflection amplifier approaching the quantum limit at microwave frequencies. In this article the authors describe an improved microwave setup for such a device. Voltage-tunable capacitors enable precise impedance matching across a wide range of operating points. Also, a branch-line coupler instead of a microwave circulator is used for the separation of the input and the output signals to make the system more compact and affordable. Furthermore, a custom-designed bias tee is introduced. The authors present characterization results of individual components as well as of the complete system. In particular, noise spectroscopy is used to study amplifier stability as a function of input matching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.