Abstract

We propose a new neck design for legged robots to achieve robust visual-inertial state estimation in dynamic locomotion. While visual-inertial state estimation is widely used in robotics, it has a problem of being disturbed by the impacts and vibration generated when legged robots move dynamically. The use of rubber dampers may be a solution, but even if the dampers are proper for some gaits, they may be excessively deformed or resonated at certain frequencies during other gait locomotion since they are not tunable. To address this problem, we develop a tunable neck system that absorbs the impacts and vibration during diverse gait locomotions. This neck system consists of two components: 1) a suspension mechanism that compensates for the weight of the head equipped with a camera and IMU (inertial measurement unit), absorbs the impacts and the head motion of high frequencies including vibration as a fixed low-pass filter; and 2) a dynamic vibration absorber (DVA) that can be reactively-adjusted to diverse gait frequencies to alleviate excessive head movements. We present a dynamics analysis of the neck system and show how to adjust the target frequency of the system. Simulation and experimental validation are performed to verify the effect of the proposed neck design, manifesting superior estimation performance and robustness across diverse gaits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.