Abstract
Surface wettability modifications of biocompatible materials and wettability patterning are attractive methods for directed biological cells immobilization for tissue engineering, drug delivery, gene transfer, etc. Hydroxyapatite is known as an implantable biomimetic material and a substrate for effective adhesion of biological cells of various origins. Here we report the use of a low-energy electron irradiation to achieve tunable wettability of the hydroxyapatite in a wide range of contact angles, from 10° to 100°, with accuracy of ±3°. The incident electrons generate electron/hole pairs resulting in significant variation of the surface potential of the hydroxyapatite semiconductor and give rise to pronounced wettability modification. Tailoring the gradually varied wettability state in the hydroxyapatite nanoceramics enabled the differential binding of biological materials with different surface properties, such as bovine serum albumin (BSA) and deoxyribonucleic acid (DNA).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.