Abstract

Hydrophile-lipophile balance (HLB) has a great influence on the self-assembly and physicochemical properties of amphiphiles, thus affecting their biological effects. It is shown that amphiphilic nanoparticles (NPs) with a moderate HLB value display enhanced stability and highly efficient tumor retention. 2,2-Bis(hydroxymethyl)propionic acid hyperbranched poly(ethylene glycol) (PEG)-pyropheophorbide-a (Ppa) amphiphiles (G320P, G310P, G220P, and G210P) are synthesized with a tunable HLB value from 6.1 to 9.9 by manipulating the number of generation of dendrons (G2 or G3) and the molecular weight of PEG chains (10 or 20 kDa). Molecular dynamics simulations reveal that G320P and G210P with a moderate HLB value (8.0 and 7.8) self-assemble into very stable NPs with a small solvent accessible surface area and high nonbonding interactions. G320P with a moderate HLB value (8.0) and a long PEG chain excels against other NPs in prolonging the blood circulation time of Ppa (up to 13-fold), penetrating deeply into multicellular tumor spheroids and accumulating in tumors, and enhancing the PDT efficacy with a tumor growth inhibition of 96.0%. Rational design of NPs with a moderate HLB value may be implemented in these NP-derived nanomedicines to achieve high levels of retention in tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.