Abstract

Nonlinear atomic media are promising substitutes for spatial light modulators (SLMs) owing to the high tunability and fast response. We demonstrate the generation of high-order Bessel-like beam based on cross-phase modulation in 85Rb atoms. The atomic medium, whose refractive index is spatially modulated by the focused Gaussian pump beam, acts as a nonlinear focusing lens for the Laguerre-Gaussian probe beam. As a result, the probe beam carries the nonlinear phase shift and is converted into a Bessel-like mode in far-field diffraction. The superior self-healing ability of the generated high-order Bessel-like beam is verified by inserting an obstruction in the beam path, and its high tunability is investigated in terms of the pump beam power and vapor temperature. Furthermore, this novel beam is used in an obstruction-immune rotation sensor to measure the angular velocity. Nonlinear atomic medium as a novel SLM promises considerable application prospects in modulating the light field structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.