Abstract

We consider dilute gases of dipolar bosons or fermions in the high-temperature limit in a spherically symmetric harmonic trapping potential. We examine the system using a virial expansion up to second order in the fugacity. Using the Born approximation and assuming purely dipolar interactions, we find that the second-order virial coefficient for both bosons and fermions depends quadratically on the dipole length and is negative at high temperatures, indicating that to lowest order in the dipole-dipole interactions the dipolar single-component quantum gases are repulsive. If the $s$-wave scattering length for the bosonic system is tunable and its absolute value is made small, then the $s$-wave interactions dominate and the dipolar gas behaves like a weakly interacting Bose gas with isotropic $s$-wave interactions. If the generalized scattering lengths for the fermionic system are tunable, then the dipole length can enter linearly in the virial equation of state, enhancing the dipole-dipole effects in the thermodynamic observables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.