Abstract

Artificially engineered geometric phase optical elements may have tunable photonic functionalities owing to their sensitivity to external fields, as is the case for liquid crystal based devices. However, liquid crystal technology combining high-resolution topological ordering with tunable spectral behavior remains elusive. Here, by using a magnetoelectric external stimulus, we create robust and efficient self-engineered liquid crystal geometric phase vortex masks with a broadly tunable operating wavelength, centimeter-size clear aperture, and high-quality topological ordering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.