Abstract
We propose and theoretically study a tunable frequency matching method for four-wave-mixing Bragg-scattering frequency conversion in microring resonators. A tunable coupling between the clockwise and counterclockwise propagating modes in the resonators was designed to introduce adjustable mode splitting, thus compensating for the frequency mismatching under different wavelengths. Using a silicon nitride ring resonator as an example, we showed that the tuning bandwidth approaches 35 number of FSRs. Numerical simulations further revealed that the phase-matching strategy is valid under different wavelength combinations and is robust to variations in waveguide geometry and fabrication. These results suggest promising applications in high-efficiency frequency conversion, integrated nonlinear photonics, and quantum optics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.