Abstract

A novel photonic fractional-order temporal differentiator is proposed based on the inverse Raman scattering (IRS) in the side-coupled silicon microring resonator. By controlling the power of the pump light-wave, the intracavity loss is adjusted and the coupling state of the microring resonator can be changed, so the continuously tunable differentiation order is achieved. The influences of input pulse width on the differentiation order and the output deviation are discussed. Due to the narrow bandwidth of IRS in silicon, the intracavity loss can be adjusted on a specific resonance while keeping the adjacent resonances undisturbed. It can be expected that the proposed scheme has the potential to realize different differentiation orders simultaneously at different resonant wavelengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.