Abstract
With intrinsic compliance, soft pneumatic actuators are widely utilized in delicate tasks. However, complex fabrication approaches and limited tunability are still problems. Here, we propose a tunable folding assembly strategy to design and fabricate soft pneumatic actuators called FASPAs (folding assembly soft pneumatic actuators). A FASPA consists only of a folded silicone tube constrained by rubber bands. By designing local stiffness and folding manner, the FASPA can be designed to achieve four configurations, pure bending, discontinuous-curvature bending, helix, and discontinuous-curvature helix. Analytical models are developed to predict the deformation and the tip trajectory of different configurations. Meanwhile, experiments are performed to verify the models. The stiffness, load capacity, output force, and step response are measured, and fatigue tests are performed. Further, grippers with single, double, and triple fingers are assembled by utilizing different types of FASPAs. As such, objects with different shapes, sizes, and weights can be easily grasped. The folding assembly strategy is a promising method to design and fabricate soft robots with complex configurations to complete tough tasks in harsh environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.