Abstract
Chemical structures bearing a combination of aggregation-induced emission enhancement (AIEE) and intramolecular charge transfer (ICT) properties attracted the attention of many researchers. Recently, there is an increasing demand to pose tunable AIEE and ICT fluorophores that could present their conformation changes-related emission colors by adjusting the medium polarity. In this study, we designed and synthesized a series of 4-alkoxyphenyl-substituted 1,8-naphthalic anhydride derivatives NAxC using the Suzuki coupling reaction to construct donor-acceptor (D-A)-type fluorophores with alkoxyl substituents of varying carbon chain lengths (x = 1, 2, 4, 6, 12 in NAxC). To explain the observation that molecules with longer carbon chains revealed unusual fluorescence enhancement in water, we study the optical properties and evaluate their locally excited (LE) and ICT states by solvent effects combined with Lippert-Mataga plots. Then, we explored the self-assembly abilities of these molecules in water-organic (W/O) mixed solutions and observed the morphology of its nanostructure using a fluorescence microscope and SEM. The results show that NAxC, x = 4, 6, 12 show different degrees of self-assembly behaviors and corresponding aggregation-induced emission enhancement (AIEE) progresses. At the same time, different nanostructures and corresponding spectral changes can be obtained by adjusting the water ratio in the mixed solution. That is, NAxC compounds present different transitions between LE, ICT and AIEE based on the polarity, water ratio and time changes. We designed NAxC as the structure-activity relationship (SAR) of the surfactant to demonstrate that AIEE comes from the formation of micelle-like nanoaggregates, which causes a restriction of the transfer from the LE state to the ICT state, and micelle formation results in a blue-shift in emission and enhances the intensity in the aggregate state. Among them, NA12C is most likely to form micelles and the most obvious fluorescence enhancement, which will switch over time due to the nano-aggregation transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.