Abstract

Tunable filter Raman spectroscopy is used to efficiently produce Raman excitation maps of unpurified and type-purified single walled carbon nanotubes (SWCNTs). Maps with fine excitation resolution (1 nm) are created over a wide wavelength range (727 to 980 nm), extending from metallic to semiconducting resonances. At a given wavelength, the wide bandwidth (>3,000 cm–1) allows the comparison of the G band with the radial breathing mode (RBM), and shows the 2D band and other less prominent bands. Materials examined included unsorted powders, aqueous sorted semiconductors, aqueous sorted metals, and polyfluorene sorted semiconductors in toluene. The Raman excitation profiles of the G band are broad, relative to the RBM bands. The maps offer evidence of minority species contamination, except in the case of the polyfluorene sorted semiconductors. Tunable Raman spectroscopy data help validate the simpler fixed wavelength Raman spectroscopy approaches to purity assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.