Abstract

Worldwide, the most frequently diagnosed cancer is female breast cancer, and it poses a serious global health threat. Traditional cancer therapies are associated with various side effects, so developing better therapies for breast cancer is necessary, such as laser therapy which could be a promising treatment option. The aim of the current study was to investigate the femtosecond laser irradiation effect on breast cancer using T47D cell line as an in vitro model. Cells were seeded at a density of 5×104 cells/well in 96-well plates and incubated overnight. After that, the cells were exposed to femtosecond laser irradiation at various wavelengths falling in the UV, visible, and IR ranges for 3, 5, or 10min and at a constant power of 100mW. Cell viability was measured directly and 24h after femtosecond laser irradiation using MTT assay. When using different femtosecond laser irradiation parameters, especially the 380 and 400nm femtosecond laser irradiation, there was significant inhibition of breast cancer cell growth, either directly or 24h after femtosecond laser exposure. Also, 420 and 440nm significantly affected the viability of the cells. It was also observed that increasing exposure time enhances the observed effect, so 10min exposure time was the best time of exposure. However, 700, 720, 750, and 780nm did not significantly affect the cells viability with different exposure times. It was possible to conclude from the aforementioned results that femtosecond laser irradiation exerted a significant anticancer effect against T47D cells. Consequently, the femtosecond laser could be used successfully for breast cancer management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call