Abstract

We report a new high-resolution spectroscopic technique designed for the study of short-lived free radicals and clusters containing free radicals. Excimer laser photolysis of a suitable precursor during the initial stages of a planar supersonic expansion is used to generate ultracold free radicals which are subsequently probed by a tunable far infrared laser. A detection limit of 10 8 molecules/cm 3 for light hydrides is demonstrated and prospects for 2 to 3 orders of magnitude improvement are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.