Abstract

We investigate electron transport through a diatomic molecule parallelly coupled to infinite source and drain contacts. We utilize a model Hamiltonian involving a Hubbard term in which the contacts are modeled using recently developed complex source and sink potentials. The zero bias transmission spectrum for a symmetrically coupled system as a function of the Fermi energy acquires a Fano lineshape as the Hubbard interaction is turned on. For large values of $U$, the Fano lineshape broadens and shifts to higher energy values disappearing eventually. Meanwhile, the Breit-Wigner resonance located at the bonding resonance in the noninteracting limit survives but its position is shifted twice the coupling between the atoms in the molecule in the infinite $U$ limit and its linewidth is reduced to half. We attribute this behaviour to the unavailability of one of the transmission channels due to Coulomb blockade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.