Abstract
Fabry-Perot resonators with inserted graphene are proposed for efficient reflectance modulation from terahertz to near-infrared frequencies. The resonators' structure is simple and consists of the Bragg top mirror, the cavity with the graphene, and the metallic bottom mirror. Reflectance from the cavities is electrically controlled by adjusting the Fermi level in the graphene. At near-infrared and terahertz frequencies, the amplitude modulation of the reflectance is dominant. On the other hand, tuning at mid-infrared frequencies is based on the spectral modulation of cavity resonances. By the impedance matching of resonators to a surrounding medium, the achieved insertion loss and modulation depth approach zero and 100%, respectively.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.