Abstract

Tunable extraordinary optical transmission (EOT) with graphene is realized using a novel metallic ring–rod nested structure in the terahertz frequency regime. The generated double-enhanced transmission peaks primarily originate from the excitation of localized surface plasmon resonances (LSPRs). On using graphene, the resonating surface plasmon distribution changes in the reaction plane, which disturbs the generation of LSPRs. By regulating the Fermi energy (Ef) of the graphene to reach a certain level, an adjustment from bimodal EOT to unimodal EOT is obtained. As the Ef of the graphene integrated beneath the rod increases to 0.5 eV, the transmittance of the peak at 2.42 THz decreases to 6%. Moreover, the transmission peak at 1.77 THz virtually disappears due to the Ef increasing to 0.7 eV when the graphene is placed beneath the ring. The significant tuning capabilities of the bimodal EOT indicate its promising application prospects in frequency-selective surfaces, communication, filtering, and radar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.