Abstract
We investigated the composition-dependent electronic properties of two-dimensional transition-metal dichalcogenide alloys (WxMo1-xS2) based on first-principles calculations by applying the supercell method and effective band structure approximation. It was found that hole effective mass decreases linearly with increasing W composition, and electron effective mass of alloys is always larger than that of their binary constituents. The different behaviors of electrons and holes in alloys are attributed to the fact that metal d-orbitals have different contributions to conduction bands of MoS2 and WS2 but almost identical contributions to valence bands. We examined the conduction polarity of WxMo1-xS2 monolayer alloys with four metal electrode materials (Au, Ag, Cu, and Pd). It suggests the main carrier type for transport in transistors could change from electrons to holes as W composition increases if high work function metal contacts were used. The tunable electronic properties of two-dimensional transition-metal dichalcogenide alloys make them attractive for electronic and optoelectronic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.