Abstract
Carbon-doped boron nitride nanostructures including nanosheets, nanoribbons, and nanotubes have drawn enormous research attention because of their tunable electronic properties and widespread applications. In this work, we explore the electronic and magnetic properties of graphene flake-doped single-walled boron nitride nanotubes (BNNTs) on the basis of first-principles calculations. Theoretical results reveal that the band structures of these doped BNNTs can be effectively engineered by embedding graphene flakes with different sizes and shapes. Moreover, the Lieb theorem works for the triangle graphene flake-doped BNNTs, and the corresponding doped systems are ferromagnetic, originating from the spin-polarized interface states. All BNNTs embedded with the triangular graphene flakes with relatively small sizes are typical bipolar magnetic semiconductors, which can be easily tuned into half-metals by carrier doping, opening the door to their promising applications in spintronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.