Abstract

We proposed a hybrid graphene/dielectric structure to achieve tunable electromagnetically induced transparency (EIT) effect. Unit cell of hybrid structure consists of a graphene strip as bright element and a dielectric split ring resonator (DSRR) as quasi-dark element. The destructive inference between dipolar plasmon resonance induced by graphene strip and Mie resonance induced by DSRR leads to famous EIT effect. By altering physical sizes of two resonant elements and their couplings, EIT resonance can be effectively controlled. In particular, EIT window and effective group index can be dynamically dominated by varying graphene strip’s Fermi level. This active manipulation is also confirmed using “two-particle” model. More interestingly, EIT resonance can be also effectively modulated through controlling incident angles for electromagnetic (EM) waves. These results would have promising applications in areas of tunable slow light devices and new filters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call