Abstract

We propose a novel terahertz metamaterial structure based on patterned monolayer graphene. This structure produces an evident dual plasmon-induced transparency (PIT) phenomenon due to destructive interference between bright and dark modes. Since the Fermi level of graphene can be adjusted by an external bias voltage, the PIT phenomenon can be tuned by adjusting the voltage. Then the coupled-mode theory (CMT) is introduced to explore the internal mechanism of the PIT. After that, we investigate the variation of absorption rate at different graphene carrier mobilities, and it shows that the absorption rate of this structure can reach 50%, which is a guideline for the realization of graphene terahertz absorption devices. In addition, through the study of the slow-light performance for this structure, it is found that its group index is as high as 928, which provides a specific theoretical basis for the study of graphene slow-light devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.