Abstract
We describe the application of a long-wavelength vertical-cavity surface-emitting laser (VCSEL) with extended tuning range to the detection of benzene vapor at atmospheric pressure. A benzene absorption feature centered at 1684.24 nm was accessed by reducing the heat sink temperature of a VCSEL designed for room-temperature operation to −55°C. This allowed us to increase the injection current and thus to extend a single-scan tuning interval up to 46.4 cm−1 or 13.2 nm around a central wavelength of 1687.4 nm. Five absorption lines of methane in the 5903–5950 cm−1 range could be acquired within single laser scans at a repetition rate of 500 Hz. A benzene absorption feature between 5926 and 5948 cm−1 was recorded for concentration measurements at atmospheric pressure using a single-pass 1.2 m absorption cell. A 50 ppmv mixture of CH4 in N2 was introduced into the cell along with benzene vapor to calibrate benzene concentration measurements. Benzene mixing ratios down to ∼90 ppmv were measured using a direct absorption technique. The minimum detectable absorbance and detection limit of benzene were estimated to be ∼10−4 and 30 ppmv, respectively. Using the wavelength modulation technique, we measured a second harmonic sensor response to benzene vapor absorption in air at atmospheric pressure as a function of modulation index. We conclude that a low-temperature monolithic VCSEL operating near 1684 nm can be employed in compact benzene sensors with a detection limit in the sub-ppm range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.