Abstract
Extremely long coherence times, excellent single-qubit gate fidelities, and two-qubit logic have been demonstrated with silicon metal-oxide-semiconductor spin qubits, making it one of the leading platforms for quantum information processing. Despite this, a long-standing challenge in this system has been the demonstration of tunable tunnel coupling between single electrons. Here we overcome this hurdle with gate-defined quantum dots and show couplings that can be tuned on and off for quantum operations. We use charge sensing to discriminate between the (2,0) and (1,1) charge states of a double quantum dot and show excellent charge sensitivity. We demonstrate tunable coupling up to 13 GHz, obtained by fitting charge polarization lines, and tunable tunnel rates down to <1 Hz, deduced from the random telegraph signal. The demonstration of tunable coupling between single electrons in a silicon metal-oxide-semiconductor device provides significant scope for high-fidelity two-qubit logic toward quantum information processing with standard manufacturing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.