Abstract

Understanding the interactions between a semiconducting nanocrystal surface and chiral anchoring molecules could resolve the mechanism of chirality induction in nanoscale and facilitate the rational design of chiral semiconducting materials for chiroptics. Now, chiral molybdenum oxide nanoparticles are presented in which chirality is transferred via a bio-to-nano approach. With facile control of the amount of chiral cysteine molecules under redox treatment, circular dichroism (CD) signals are generated in the plasmon region and metal-ligand charge-transfer band. The obtained enhanced CD signals with tunable lineshapes illustrate the possibility of using chiral molybdenum oxide nanoparticles as potentials for chiral semiconductor nanosensors, optoelectronics, and photocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call