Abstract

We numerically demonstrate a tunable broadband terahertz absorber with near-unity absorption by using multilayer graphene ribbons sandwiched in a plasmonic integrated structure. By stacking slightly different widths of graphene ribbons in a sandwiched configuration, the absorption bandwidth can be increased because of the different resonant modes closely positioned together. The absorption spectrum's center frequency can be manipulated by varying the graphene's chemical potential, which provides a flexible way to design and optimize absorption property after fabrication. Furthermore, the structure can tolerate a wide range of incident angles, while the improved structure with graphene nanoparticles also shows polarization-independent feature. In this routine, stacking more graphene ribbons or particles with well-designed dimensions can further increase the bandwidth, as long as the metamaterial dimension satisfies the sub-wavelength condition. Therefore, our research provides an important theoretical guide for designing various graphene-based tunable broadband absorbers at terahertz, infrared, and microwave frequencies. This may have promising applications in imaging, sensing, and novel optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.