Abstract

Tunable broadband optical field enhancements are demonstrated for graphene-based nanoscale slot waveguides, and the extremely strong field intensity inside the slot region is produced based on the ultrahigh effective mode index. Analytic formulas are obtained to reveal the dependence of enhanced optical fields and effective mode index on the gap distance, the Fermi energy, the width of nanoribbons, and the background medium. We show that most of the optical field is concentrated within the slot regions with the normalized power about up to 86%, and the averaged optical field intensity reaches 104 μm-2 for the slot waveguide with a 3 nm gap distance and 50 nm width. Meanwhile, the optical field enhancement effect is broadband at infrared frequencies and controlled by Fermi energy via bias electrical voltage for graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.