Abstract

More than 50 years ago, B. Lyot and later on I. Solc introduced new types of optical filters called birefringent filters. Such filters take advantage of the phase shifts between orthogonal polarization to obtain narrow band filters. It requires birefringent wave plates for introducing phase retardation between the two orthogonal components of a linearly polarized light that correspond to the fast and slow axes of the birefringent material. In this paper we present new methods and architectures that generalize the Lyot-Ohman and Solc filters for optimally synthesizing an arbitrary all-optical filter by defining an error metric and minimizing it with simulated annealing. We also suggest the use of the electro-optic effect for controlling the retardation of individual elements that make up the tunable filter. Such a filter could be used for instance for realizing a dynamically tunable optical add/drop multiplexer in a telecommunication system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.