Abstract

Polylactide (PLA) and silk fibroin (SF) are biocompatible green macromolecular materials with tunable structures and properties. In this study, microporous PLA/SF composites were fabricated under different pressures by a green solid solvent-free foaming technology. Scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), thermogravimetric (TG) analysis, and Fourier transform infrared (FTIR) spectroscopy were used to analyze the morphology, structure, and mechanical properties of the PLA/SF scaffolds. The crystalline, mobile amorphous phases and rigid amorphous phases in PLA/SF composites were calculated to further understand their structure-property relations. It was found that an increase in pore density and a decrease in pore size can be achieved by increasing the saturation pressure during the foaming process. In addition, changes in the microcellular structure provided PLA/SF scaffolds with better thermal stability, tunable biodegradation rates, and mechanical properties. FTIR and XRD analysis indicated strong hydrogen bonds were formed between PLA and SF molecules, which can be tuned by changing the foaming pressure. The composite scaffolds have good cell compatibility and are conducive to cell adhesion and growth, suggesting that PLA/SF microporous scaffolds could be used as three-dimensional (3-D) biomaterials with a wide range of applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.